粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数。其再非线性、非高斯系统中具有优良的特性。opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到。learning opencv一书中有介绍,但距离直接使用还是有些距离。在经过一番坎坷后,终于可以用了,希望对你有帮助。
本文中给出的例子跟 我的另一篇博文是同一个应用例子,都是对二维坐标进行平滑、预测
使用方法:
1.创建并初始化const int stateNum=4;//状态数
const int measureNum=2;//测量变量数 const int sampleNum=2000;//粒子数CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);
在不影响性能的情况下,粒子数量越大,系统表现的越稳定
其他初始化内容请参考learning opencv
2.预测3.更新例子可信度,也就是权重。本例中更新方法与learning opencv中有所不同,想看代码 4.更新CvConDensation
代码:
[cpp]
- #include <cv.h>
- #include <cxcore.h>
- #include <highgui.h>
- #include <cvaux.h>
- #include <cmath>
- #include <vector>
- #include <iostream>
- using namespace std;
- const int winHeight=600;
- const int winWidth=800;
- CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);
- //mouse event callback
- void mouseEvent(int event,int x,int y,int flags,void *param )
- {
- if (event==CV_EVENT_MOUSEMOVE) {
- mousePosition=cvPoint(x,y);
- }
- }
- int main (void)
- {
- //1.condensation setup
- const int stateNum=4;
- const int measureNum=2;
- const int sampleNum=2000;
- CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);
- CvMat* lowerBound;
- CvMat* upperBound;
- lowerBound = cvCreateMat(stateNum, 1, CV_32F);
- upperBound = cvCreateMat(stateNum, 1, CV_32F);
- cvmSet(lowerBound,0,0,0.0 );
- cvmSet(upperBound,0,0,winWidth );
- cvmSet(lowerBound,1,0,0.0 );
- cvmSet(upperBound,1,0,winHeight );
- cvmSet(lowerBound,2,0,0.0 );
- cvmSet(upperBound,2,0,0.0 );
- cvmSet(lowerBound,3,0,0.0 );
- cvmSet(upperBound,3,0,0.0 );
- float A[stateNum][stateNum] ={
- 1,0,1,0,
- 0,1,0,1,
- 0,0,1,0,
- 0,0,0,1
- };
- memcpy(condens->DynamMatr,A,sizeof(A));
- cvConDensInitSampleSet(condens, lowerBound, upperBound);
- CvRNG rng_state = cvRNG(0xffffffff);
- for(int i=0; i < sampleNum; i++){
- condens->flSamples[i][0] = float(cvRandInt( &rng_state ) % winWidth); //width
- condens->flSamples[i][1] = float(cvRandInt( &rng_state ) % winHeight);//height
- }
- CvFont font;
- cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);
- char* winName="condensation";
- cvNamedWindow(winName);
- cvSetMouseCallback(winName,mouseEvent);
- IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);
- bool isPredictOnly=false;//trigger for prediction only,press SPACEBAR
- while (1){
- //2.condensation prediction
- CvPoint predict_pt=cvPoint((int)condens->State[0],(int)condens->State[1]);
- float variance[measureNum]={0};
- //get variance/standard deviation of each state
- for (int i=0;i<measureNum;i++) {
- //sum
- float sumState=0;
- for (int j=0;j<condens->SamplesNum;j++) {
- sumState+=condens->flSamples[i][j];
- }
- //average
- sumState/=sampleNum;
- //variance
- for (int j=0;j<condens->SamplesNum;j++) {
- variance[i]+=(condens->flSamples[i][j]-sumState)*
- (condens->flSamples[i][j]-sumState);
- }
- variance[i]/=sampleNum-1;
- }
- //3.update particals confidence
- CvPoint pt;
- if (isPredictOnly) {
- pt=predict_pt;
- }else{
- pt=mousePosition;
- }
- for (int i=0;i<condens->SamplesNum;i++) {
- float probX=(float)exp(-1*(pt.x-condens->flSamples[i][0])
- *(pt.x-condens->flSamples[i][0])/(2*variance[0]));
- float probY=(float)exp(-1*(pt.y-condens->flSamples[i][1])
- *(pt.y-condens->flSamples[i][1])/(2*variance[1]));
- condens->flConfidence[i]=probX*probY;
- }
- //4.update condensation
- cvConDensUpdateByTime(condens);
- //draw
- cvSet(img,cvScalar(255,255,255,0));
- cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green
- char buf[256];
- sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);
- cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));
- if (!isPredictOnly) {
- cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red
- sprintf_s(buf,256,"real position :(%3d,%3d)",mousePosition.x,mousePosition.y);
- cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));
- }
- cvShowImage(winName, img);
- int key=cvWaitKey(30);
- if (key==27){ //esc
- break;
- }else if (key==' ') { //trigger for prediction
- //isPredict=!isPredict;
- if (isPredictOnly) {
- isPredictOnly=false;
- }else{
- isPredictOnly=true;
- }
- }
- }
- cvReleaseImage(&img);
- cvReleaseConDensation(&condens);
- return 0;
- }
kalman filter 视频演示:
演示中粒子数分别为100,200,2000
请仔细观测效果
demo snapshot:
//上面这一篇是演示点跟踪,原文
//这一篇是上交的一哥们演示的窗口跟踪!(有code)
from: http://blog.csdn.net/yangtrees/article/details/7616483